If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+160t+30=0
a = -16; b = 160; c = +30;
Δ = b2-4ac
Δ = 1602-4·(-16)·30
Δ = 27520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27520}=\sqrt{64*430}=\sqrt{64}*\sqrt{430}=8\sqrt{430}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-8\sqrt{430}}{2*-16}=\frac{-160-8\sqrt{430}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+8\sqrt{430}}{2*-16}=\frac{-160+8\sqrt{430}}{-32} $
| -75+9c=-7+5(4c-7) | | 180=x+17+3x-5 | | z+7=2z+-1/2 | | x=-(x-7)+3 | | 687=24c+15 | | 5x+3-4=3+x | | 5(a-2)=4(a+3) | | 13x+6=90 | | 4.9x^2+19x-50=0 | | 1/4x+17/4x=3 | | 350+15x=200125x | | -y+-12=-y+6 | | -n-5n=8-8n | | -7.3=w/7+10.2 | | b/7+18=19 | | -104+4=8x+2x | | 4m+5=2m+6 | | b7+18=19 | | -19=-8+2(x-9) | | N+6=-8n+15 | | 28=11+k | | -25(10+-1x)=25x+250 | | 11x+13(10-x)=209 | | 2y=2*10=20 | | 180=5x+16+7x-4 | | 3/5u-7/2=-7/3 | | 7x+1=-53+2x | | 2(d+5)=10 | | 2n+19+5n+21=180 | | -3w-5=2w-40 | | 1/4(x+1)+1=2 | | 2x−1+2x+5=103x−7 |